

Planow graphs ove measure theable

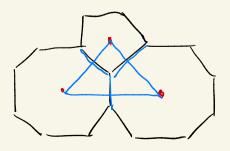
Recal

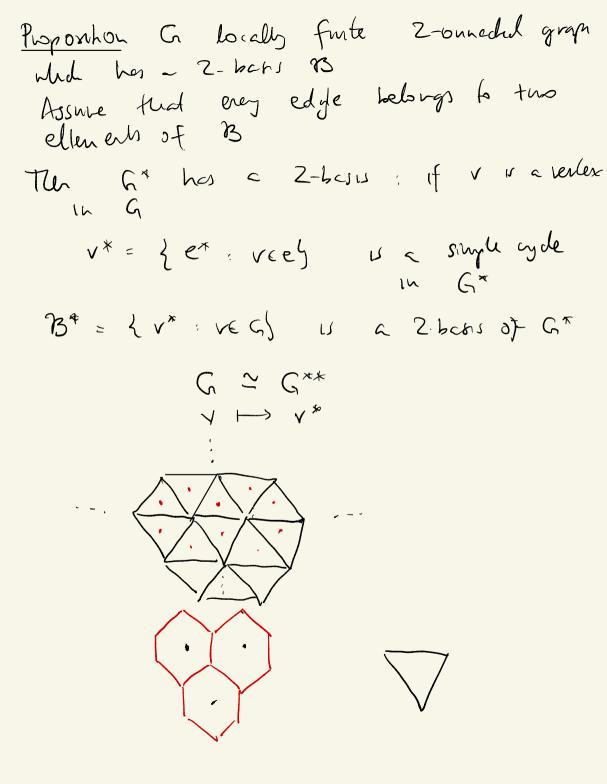
Β,	BZ	Bj
By	B5	Bc

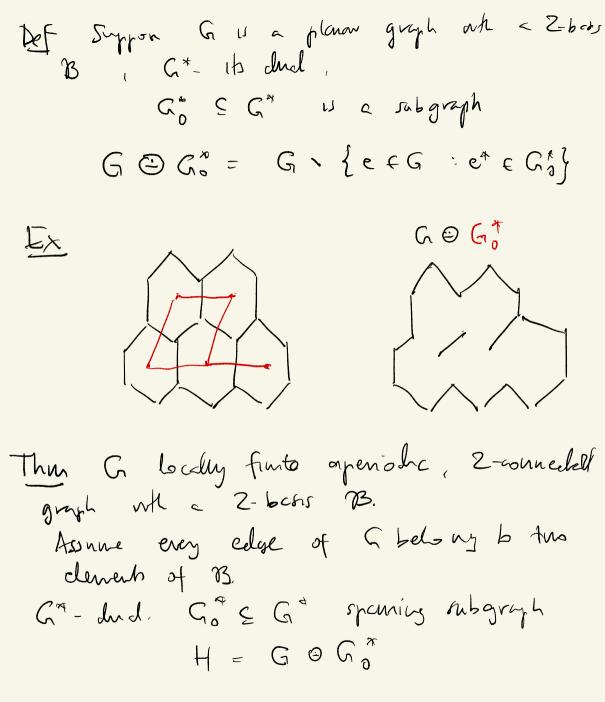
An accumulation-free planar embedding of a graph is a planar embedding site every compared subset of 12° illeveres fundely may vertices and edges

A five of a planar embelling
is actionnelled component of the
complement of the embedding
if F is a five
$$\partial F$$
 is either a cycle
or a bininfinite line
if it is a cycle, then we call it a fearl cycle.
This (Thomasen) G 2-connected backy
fute graph
i) if G admbs an acumulation-free
planar embedding, the B the set
of all facial cycles is a 2-bans of G
2) if G was a 2-bans of G
2) if G was a 2-bans of G
in acc. free glanar embedding sh
B is the set of all facial cycles.
Remark 1)

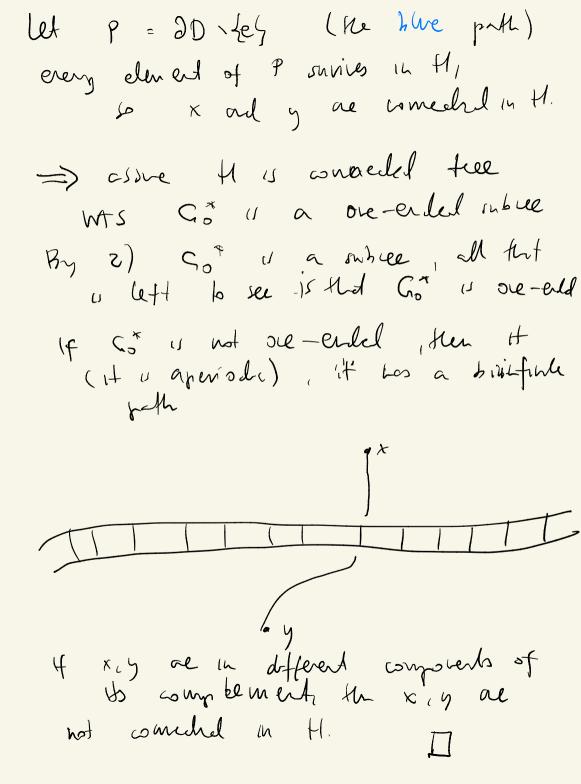
ang graph hers convort cal と) blodes which are meximal 2-connected Components and the graph is a "tele" of blocks 0-2conn. The dud of graph G with a 2-bars B G* whose vertices are the elements of B If e is and edge in G s.M. e belong to two ells of B, say B, Bc e* is edge between B1, B2







i) H is acyclic iff Go u aperioda



Phyonhon A G - Loc finte Boel graph on X ASX Borel I f: [A] (A -> [A] acycle the \widetilde{U} f^{-h} (x) is finite fsG f-Borel $[A]_{c} = X$ Þ-F WLOG $\exists x_{0} = \chi_{1} \chi_{1} \chi_{2} \cdots \\ d(x_{n+1}, A) > d(x_{n}, A) \end{cases}$ $E = \{x$. 4 E - Boul $f(x) = \int y \in E$ $d(x,A) < d(y,A) \times \in E$ $d(y, A) < d(x, A) \times 4E$

K HE A.n. Z-endel G Loc. finte Bad IF J T S G aggle with ET = EG > G almb a 1-ended spanning Forest. ment smental side remark The let I acyclic aperiode Borel Purponha B' Loc fille

Then \exists as coychc subgraph TCG $E_T = EG$.

PF WLOG every comp. of G us Z-conn. G, set of edges which below to 1 foard ayde Step 1 B, - set of famid ands fld which By Arry Pwy A to pudre a 1-eld for its ad 6% A = B_1 and the dual $\mathbf{A} \in C_1^*$ on those comp. Where $G_1 \notin \beta$ togoogook

T = GOG^{*} Sone edge on the boundy"

From now on, assume $G_1 = \beta$ => G, G' are 1-ended fairs cover the whole place

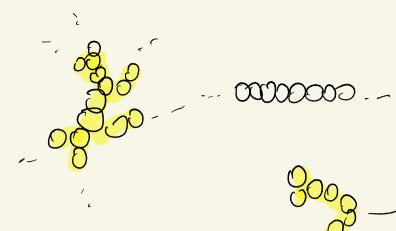
121 TEG be aggle aper.7 hyperfinite

Y - G-schurchon st Step 2

the set of comp of T that let T' = Ti 2 2 culs let A be se anon of #2 culed comps of T in Y By Purp A applied to A we how have To whose all comp ar t-entel. L=G*OToC We use purp B to Ct whe

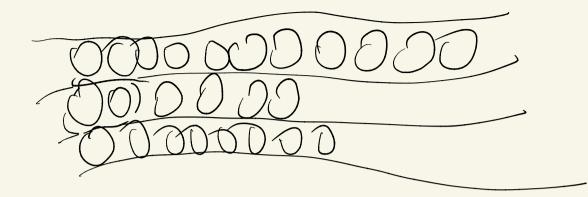
the subtreating L feeld spanning The nee exils a subfacest of G* and we are doe by Last the. Then how on cosne all comp. of T al Z-added (or all comp of Tt are Zerda) $\frac{Step 3}{H^*} = G^* OT$ H* is acyclic aperiodic subgraph of C*

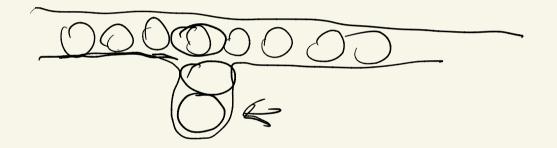
2* - saturbon of \$2 alled comp of +1* 2 = 92*



By Ry B' apphed to H*1Z* ve ca get a 1-edel Tub furget of H*124, und 1-edel sulfacit of G*.

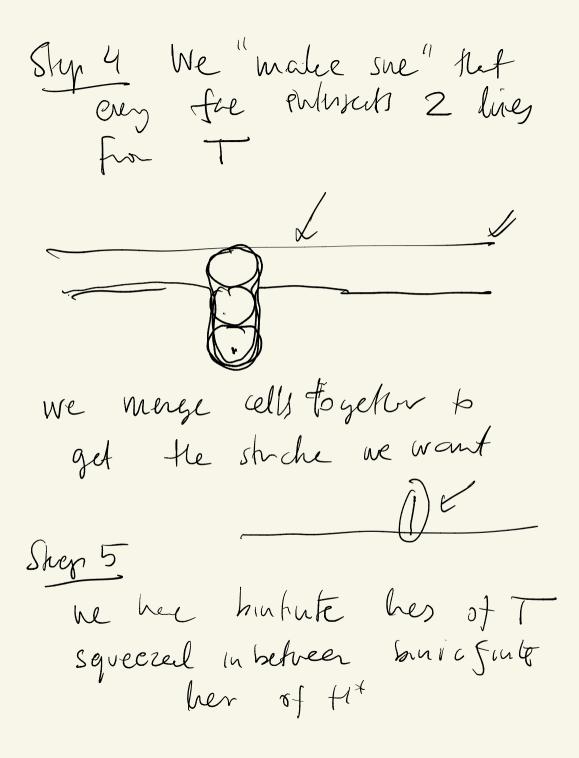
From now so we restrict attention to X-Z al hence assue all Ht-comp. ar 2 ended.

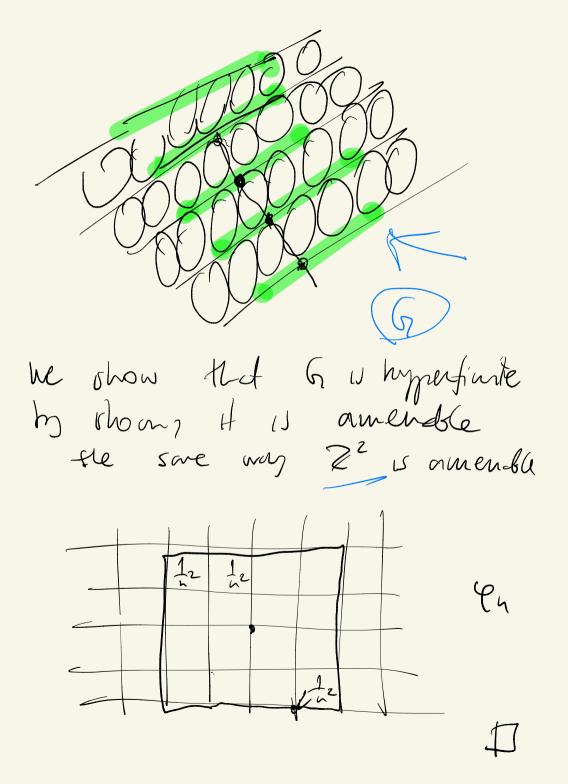




Note that every face in X-2 con interted \$ 2 biles for T

becase she se He fre is n Z





Cor $\Pi_1(S)$ is steadle for any surface S.